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1 Image/Watermark Decomp.

We derive the solution to the optimization problem in Eq. 11 in the continuous
domain, i.e., replacing the sum by an integral. In this case, the optimal solution
must satisfy the Euler-Lagrange equations, given by
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for all pixel locations p, where L is the integrand in Eq. 11. That is,

L = Ldata(Ik,Wk, α) + λILreg(∇Ik) + λwLreg(∇Wk) +

λαLreg(∇α) + βLf (∇(αWk)) + γLaux(W,Wk), (3)

where Lx is the corresponding integrand to term Ex in the paper (i.e., the
expression inside the sum). Keeping only the relevant terms in L, Eq. (1-2)
are given by:
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Let α = diag(α), ᾱ = diag(1− α) be diagonal matrices, where α and 1− α are
the diagonals, respectively. We define the following notations:

Ψ′
data = diag(Ψ′((αW k + (1− α)Ik − Jk)2))

Ψ′
w = diag(Ψ′((|αx|W k

x + |αy|W k
y )2))

Ψ′
I = diag(Ψ′((|αx|Ikx + |αy|Iky )2))

Ψ′
f = diag(Ψ′(‖∇(αW k)−∇Wm)‖2)

Ψ′
aux = diag(Ψ′((W k −W )2))
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Ψ′rI = diag(Ψ′((|αx|I2x + |αy|I2y))

Ψ′rw = diag(Ψ′((|αx|W 2
x + |αy|W 2

y ))

With these notations in hand, (1-2) can be explicitly written as[
α2Ψ′

data + λwLw + βAf αᾱΨ′
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and Dx,Dy denote the horizontal and vertical derivatives operators. The
vectors bw, bI are given by

bw = αTΨ′
dataJ

k + βLfWm + γΨ′
auxW

bI = ᾱTΨ′
dataJ

k.

The weighting matrices cx, cy are given by cx = diag(|αx|) and cy =
diag(|αy|).

As mentioned in Sec. 3.2, we solve Eq. 6 using iterative reweighed least
square, i.e., iterating between computing the non linear terms Ψ′ based on the
current estimate, and updating the solution of Ik and Wk.

II. Matte Update: The EL equation for Eq. 12 is given by(∑
k

Ψ′
k + λαLα + βÃf

)
α =

∑
k

Ak(J − Ik) + βW TLfWm, (7)

where Lf as defined above, W =diag(W ) and

Ψ′
k = diag

(
Ψ′ ((αW + (1− α)Ik − Jk)2(W − Ik)

))
Lα = Dx

TΨ′
αDx +Dy

TΨ′
αDy

Ãf = W TLfW

As before, Ψ′
α=diag(Ψ′(‖∇α‖2)).

2 Blend Factor Estimation

We assume a small per-image deviation from a global blend factor c, i.e., the
opacity of the kth image watermark is ck · c. We solve for a per-image r ck by
minimizing the following objective

Ψ((ckcαW + (1− ckcα)Ik − Jk)2) + λc(ck − 1)2, (8)

where λc is the weight of the regularization term (which controls the amount
of deviation from the global opacity), and Ψ is a robust function. Minimizing
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Input: A collection of watermarked images {Jk}.
(optional) In case of random watermark position – bounding box around
watermarked region in a single image Ji
Output: Watermark W , alpha matte α, watermark free collection {Ik}
1. Compute initial matted watermark & detect all watermarks (Sec. 3.1)
2. Initialize α using single-image matting
3. Estimate global (average) blend factor c
4. for t = 1 to T do

for k = 1 to K do
I. Image–Watermark Decomposition:
Solve for Ik and Wk, keeping α and W fixed.
II. Opacity Estimation (Optional):
Solve for small per-image variation in opacity ck.
III. Flow Estimation (Optional):
Solve for small per-image watermark perturbation ωk

end
IV. Watermark Update:
Solve for W keeping {Ik,Wk, ck, ωk}, and α fixed.
IIV. Matte Update:
Solve for α keeping {Ik,Wk ck, ωk}, and W fixed.

end

Algorithm 1: Our automatic multi-image watermark removal algorithm

this equation w.r.t. ck, and keeping the rest of the unknowns (W,α, Ik, c) fixed,
leads to

ck =
(
λc −

∑
(Ψ′

k)(Ik − Jk)α(W − Ik)
)/(

λc +
∑

(Ψ′
kα

2(W − Ik)2)
)
, (9)

where Ψ′
k = Ψ′(ckcαW + (1− ckcα)Ik−Jk)2. This estimation is integrated into

our multi-image matting and reconstruction algorithm as additional (optional)
step (see Alg. 1).

3 The Effect of Number of Images:

We tested how the number of images effects on our performance. In particular,
we evaluated the impact of two factors: (i) #images used to estimate the initial
matted watermark (Sec. 3.1), (ii) #images used in the multi-image matting step
(Sec. 3.2). We denote these two factors by Ninit, and Nmatting, respectively.

The computed PSNR and DSSIM errors for running our algorithm with
different values of Ninit, and Nmatting, on the CVPR17 dataset, are presented
in Fig. 1(a-b). An example of our reconstructions for the minimal (Ninit =
10, Nmatting = 5), and maximal (Ninit = 300, Nmatting = 70) combinations are
shown in Fig. 1(c-d), respectively. As expected, the results improves as more
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Figure 1: The effect of number of images. (a-b) Error matrix measuring PSNR
and DSSIM between the ground truth and our results, respectively; the num-
ber of images used for initial matted-watermark estimation (Ninit) is changing
along the columns; the number of images used for the multi-image matting step
(Nmatting) is changing along the rows. (c-d) An example of our result corre-
sponding to locations (1,1) and (5,5) in the error matrix, respectively.

images are used. However, with Ninit = 300 the errors are already visually
unnoticeable. Furthermore, this evaluation shows that the accuracy of the initial
matted-watermark has much higher impact on the quality of the results than
the number of images used for the multi-image matting step. That is, with a
good initialization of the watermark in hand, it is enough to have an order of
tens images for decomposition step.
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